Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Mustafa Odabașoğlu ${ }^{\text {a }}$ * and Orhan Büyükgüngör ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Faculty of Arts \& Science, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey, and ${ }^{\text {b }}$ Department of Physics, Faculty of Arts \& Science, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey

Correspondence e-mail: muodabas@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.072$
$w R$ factor $=0.203$
Data-to-parameter ratio $=13.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
3-\{4-[4-(3-Oxo-1,3-dihydroisobenzofuran-1-ylamino)benzyl]phenylamino\}isobenzofuran1 (3H)-one dimethylformamide solvate

The crystal structure of the title compound, $\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4} \cdot-$ $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$, is stabilized by two $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and six $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonds and $\mathrm{C}-\mathrm{H} \cdots \pi$ and $\pi-\pi$ interactions. The intermolecular hydrogen bonds generate $R_{1}^{2}(6)$ and $R_{2}^{2}(32)$ ring motifs.

Comment

Benzolactones are found in plants and they show several pharmacological effects, such as fungicidal, bactericidal, herbicidal and analgesic activities (Aoki et al., 1973; Lacova, 1973). The present work is a part of our systematic research on the crystal structure analysis of 3 -substituted phthalides (3substituted benzolactones) synthesized from reactions of aromatic amines and phthalaldehydic acid.

(I)

In (I), the molecules have a planar configuration at the N atoms. The molecular conformation (Fig. 1) and relative orientation of the solvent molecule are defined by ten dihedral angles $\left[A / B=58.35(15)^{\circ}, A / C=45.04(15)^{\circ}, A / D=\right.$ $71.49(11)^{\circ}, A / E=36.9(4)^{\circ}, B / C=78.50(18)^{\circ}, B / D=$ $62.89(15)^{\circ}, B / E=37.3(4)^{\circ}, C / D=54.82(15)^{\circ}, C / E=73.6(4)^{\circ}$ and $\left.D / E=72.2(4)^{\circ}\right]$, and these angles show that the molecules do not exhibit even approximate rotational symmetry but the orientations of $A-B$ and $C-D$ rings are similar for the two independent phenylphthalide units within the molecule.

The asymmetric unit (Fig. 1) contains one 3-\{4-[4-(3-oxo-1,3-dihydroisobenzofuran-1-ylamino)benzyl]phenylamino\}-isobenzofuran- $1(3 H)$-one molecule and one dimethylformamide (DMF) molecule, which are linked by $\mathrm{N} 2-$ $\mathrm{H} 2 \cdots \mathrm{O} 5$ and $\mathrm{C} 34-\mathrm{H} 34 \cdots \mathrm{O} 5$ hydrogen bonds (Table 2), forming a six-membered ring with graph-set notation $R_{2}^{1}(6)$ (Etter, 1990; Bernstein et al., 1995). This motif further selforganizes through $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Fig. 2), generating an array of two hydrogen bonds, the ring having graph-set notation $R_{2}^{2}(32)$. These hydrogen-bonded rings are linked into a complex three-dimensional framework by a combination of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2 and Fig. 3). There are also $\mathrm{C}-\mathrm{H} \cdots \pi$ (Table 2) and $\pi-\pi$ interactions. The $\pi-\pi$ interaction occurs between the $\mathrm{O} 2 / \mathrm{C} 1 / \mathrm{C} 2 /$

Figure 1
A view of (I), showing the atomic numbering scheme, with displacement ellipsoids drawn at the 30% probability level. The labels A, B, C and D denote the ring planes and E the DMF molecular plane excluding the H atom.

Figure 2
Part of the crystal structure of (I), showing the formation of two hydrogen-bonded ring motifs. For the sake of clarity, H atoms not involved in the motifs shown have been omitted. Atoms marked with an (i) are at the symmetry position $\left(x-1, y+\frac{1}{2}, z+\frac{1}{2}\right)$.

The packing of (I). H atoms have been omitted. The dashed lines indicate the intramolecular hydrogen bonds.
$\mathrm{C} 7 / \mathrm{C} 8$ rings of the phthalide units at (x, y, z) and $(2-x,-y$, $-z$), with a centroid-to-centroid distance of 3.506 (2) \AA and a plane-to-plane separation of $3.411 \AA$.

Experimental

The title compound, (I), was prepared as described by Odabaşoğlu \& Büyükgüngör (2006), using phthalaldehydic acid and 4-(4-aminobenzyl)benzenamine as starting materials (yield 88%; m.p. 512513 K). Crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of a DMF solution at room temperature.

Crystal data

$\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4} \cdot \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$
$V=1382.5$ (2) \AA^{3}
$M_{r}=535.58$
$Z=2$
$D_{x}=1.287 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P 1$
$a=8.0267$ (7) £
$b=12.6709$ (11) \AA
Mo $K \alpha$ radiation
$c=14.6529$ (13) \AA
$\mu=0.09 \mathrm{~mm}^{-1}$
$\alpha=98.911$ (7) ${ }^{\circ}$
$T=296 \mathrm{~K}$
Long prismatic stick, light brown
$\beta=100.893$ (7) ${ }^{\circ}$
$0.71 \times 0.34 \times 0.11 \mathrm{~mm}$
$\gamma=104.746(6)^{\circ}$

Data collection

Stoe IPDS-2 diffractometer ω scans
Absorption correction: integration
(X-RED32; Stoe \& Cie, 2002)
$T_{\text {min }}=0.951, T_{\text {max }}=0.988$
16524 measured reflections 5014 independent reflections 2712 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.101$
$\theta_{\text {max }}=25.3^{\circ}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.072$
$w R\left(F^{2}\right)=0.203$
$S=0.96$
5014 reflections
371 parameters
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.1127 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$ 。
$\Delta \rho_{\text {max }}=0.41 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.34 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

$\mathrm{C} 1-\mathrm{O} 1$	$1.204(5)$	$\mathrm{C} 21-\mathrm{O} 4$	$1.338(5)$
$\mathrm{C} 1-\mathrm{O} 2$	$1.357(5)$	$\mathrm{C} 22-\mathrm{C} 27$	$1.376(5)$
$\mathrm{C} 2-\mathrm{C} 7$	$1.375(5)$	$\mathrm{C} 28-\mathrm{N} 2$	$1.394(4)$
$\mathrm{C} 8-\mathrm{N} 1$	$1.383(5)$	$\mathrm{C} 35-\mathrm{O} 5$	$1.207(7)$
$\mathrm{C} 21-\mathrm{O} 3$	$1.204(4)$		
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	$121.6(4)$	$\mathrm{O} 3-\mathrm{C} 21-\mathrm{O} 4$	$121.5(3)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$129.3(4)$	$\mathrm{O} 3-\mathrm{C} 21-\mathrm{C} 22$	$129.3(4)$
$\mathrm{N} 1-\mathrm{C} 8-\mathrm{O} 2$	$113.6(3)$	$\mathrm{N} 2-\mathrm{C} 28-\mathrm{O} 4$	$111.0(3)$

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).
Cg1 is the centroid of the C29-C34 ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N2-H2 \cdots O	0.845 (18)	2.06 (2)	2.886 (5)	165 (4)
C34-H34 . O 5	0.93	2.81	3.505 (6)	133
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\text {i }}$	0.871 (19)	2.10 (2)	2.956 (4)	168 (4)
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O} 2^{\text {ii }}$	0.93	2.53	3.413 (6)	160
$\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{O} 1^{\text {iii }}$	0.98	2.88	3.573 (5)	129
$\mathrm{C} 25-\mathrm{H} 25 \cdots \mathrm{O} 4^{\text {iv }}$	0.93	2.54	3.408 (4)	155
C36-H36b $\cdots \mathrm{O}^{\mathrm{v}}$	0.96	2.85	3.669 (13)	143
$\mathrm{C} 37-\mathrm{H} 37 \mathrm{c} \cdots \mathrm{O}^{\text {vi }}$	0.96	2.60	3.208 (10)	121
$\mathrm{C} 14-\mathrm{H} 14 \cdots \mathrm{Cg} 1^{\text {iv }}$	0.93	3.00	3.735 (4)	137

Symmetry codes: (i) $-x,-y+1,-z+1$; (ii) $x-1, y, z$; (iii) $-x,-y+2,-z+2$; (iv) $x+1, y, z ;(\mathrm{v})-x+1,-y,-z+1$; (vi) $x+1, y-1, z$.

organic papers

All C-bound H atoms were refined using the riding-model approximation, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ for aromatic, $0.97 \AA$ for methylene and $0.98 \AA$ for methine H atoms $\left[U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right]$ and $\mathrm{C}-\mathrm{H}=0.96 \AA$ for methyl H atoms $\left[U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})\right]$. The amino atoms H1 and H 2 were located in a Fourier difference map and refined with a distance restraint of 0.87 (2) \AA.

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X AREA; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayis University, Turkey, for the use of the Stoe

IPDS-2 diffractometer (purchased under grant F. 279 of the University Research Fund).

References

Aoki, T., Furusho, T., Kimura, T., Satake, S. \& Funayama, S. (1973). JP Patent No. 7324 724; Chem. Abstr. (1974), 80, 129246.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Lacova, M. (1973). Chem. Zvesti, 27, 525-535; Chem. Abstr. (1974), 80, 59757.
Odabaşoğlu, M. \& Büyükgüngör, O. (2006). Acta Cryst. E62, o1879-o1881.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97, Univ. of Göttingen, Germany.
Stoe \& Cie (2002). X - A REA (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.

[^0]: © 2006 International Union of Crystallography All rights reserved

